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HINTS FOR ASSIGNED EXERCISES 1-25

1.
Consider a uniform static magnetic field

�B = ẑ B0 ,

where B0 is a constant.
(a.)
Show that �B can arise from the vector potential

�Aa = −B0y x̂ .

Hint:
In cartesian coordinates, take the curl of �Aa.
(b.)
Show that �B can arise from the vector potential

�Ab = 1
2B0s φ̂

(s and φ are cylindrical coordinates).
Hint:
In cylindrical coordinates, take the curl of �Ab.
Note that s is the perpendicular distance from
the point of interest to the z axis.
(c.)
By coordinate-system-independent vector anal-
ysis, show that �B can arise from the vector
potential

�A = 1
2
�B × �r

(remember that �B is constant).
Hint:
Use Identity #8 on Inside Cover (ic) #2 of
Griffiths (g). Does �B have any nonzero deriva-
tives? It’s easy to evaluate ∇ · �r and ( �B · ∇)�r in
cartesian coordinates. Do these (trivial) results
depend on the coordinate system chosen?
(d.)
Referring to g Eq. (10.7), find the gauge func-
tion λ that accomplishes the gauge transforma-
tion from �Aa to �Ab.
Hint:
If you set �Aa equal to g’s �A, and �Ab equal to his
�A′, g Eq. (10.7) becomes

�Ab − �Aa = ∇λ .

You’ll find it convenient to express both �Aa and
�Ab in the same coordinate system – probably
cartesian is easier. (Remember that φ̂ is not a
constant – it depends on where you are. See gic
#4.) Integrate

∫ �r

0

(∇λ) · d��

and use the Gradient Theorem (gic #2) to
isolate λ(�r) − λ(0); to evaluate this difference,
similarly integrate the left-hand side (lhs) over
any path you like.

2.
Griffiths Problem 10.3.
Hint:
The fields come from g Eq. (10.2) and (10.3)
(spherical polar coordinates are convenient). As
usual, get the charge and current distribu-
tions from the sourceful Maxwell equations (g
Eq. (2.16) and (7.36)).

3.
Griffiths Problem 10.5.
Hint:
Use g Eq. (10.7) to do the transformation. The
result should be very familiar!

4.
In free space with ρ = 0 and �J = 0, show that
all four Maxwell equations can be obtained cor-
rectly if the scalar potential V is assumed to
vanish, while the vector potential �A satisfies

0 = ∇ · �A

0 =
(∇2 − 1

c2
∂2

∂t2
)
�A .

Hint:
What do g Eqs. (10.2) and (10.3) tell you about
the sourceless Maxwell equations for any �A and
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V ? So let’s consider the sourceful Maxwell equa-
tions. To show that ∇ · �E = 0 as required
by Gauss’s law, use Eq. (10.2) to express �E
in terms of �A; then use the first of the above
equations. To show that c2∇ × �B = ∂ �E/∂t as
required by Maxwell’s version of Ampère’s law,
use Eq. (10.3) to express �B in terms of �A, then
apply Identity #11 (gic #2). Use the first of the
above equations to eliminate one term and the
second plus Eq. (10.3) to reexpress what remains
in terms of �E.

5.
Griffiths Problem 10.7.
Hint:
We worked this problem in class on 23 Jan –
please consult your notes. We assumed that

∇ · �A+ ε0µ0
∂V

∂t
= s(�r, t) ,

where s is any nonzero time-dependent scalar
field. What we wanted was

∇ · �A′ + ε0µ0
∂V ′

∂t
= 0

for a different (primed) set of potentials related
to the first set by g Eq. (10.7). Using Eq. (10.7)
to substitute primed potentials for the unprimed
potentials in the first equation above, and taking
advantage of a cancellation from the second
equation, we were left with a result of the form
g (10.14) with λ replacing V and s replacing
ρ/ε0. If we know how to solve (10.14) for V , do
we know how to solve the equation you got for λ?

6.
Consider the Levi-Civita density εijk ≡ 1 (ijk =
even permutation of 123); ≡ −1 (odd permuta-
tion of 123); ≡ 0 (otherwise). It is found, for
example, in the cross product

(�a×�b)i = εijkajbk .

Note that summation over the repeated indices
j and k is implied; their domain is 1 ≤ j, k ≤ 3.
(a.)
Show that

εijkεklm = δilδjm − δimδjl ,

where δ is the Kronecker delta function (whose
elements are those of the unit matrix).
Hint:
εijk and εklm vanish unless i �= j �= k and
k �= l �= m. Therefore only one value of k yields
a nonzero term, which occurs either if i = l and
j = m or if i = m and j = l. Suppose that
k takes on its one useful value, that i = l and
j = m, and that ijk is an even permutation
(even number of adjacent swaps) of 123. What
value does εijkεklm take under those circum-
stances? Work out the other three possibilities.
(b.)
The determinant of a 3× 3 matrix is given by

detA ∝ εijkAilAjmAknεlmn .

By considering the number of nonzero terms on
the rhs, and comparing it to the number of
terms you would have expected for a 3×3 deter-
minant, deduce the constant of proportionality.
Express it in terms of a factorial.
Hint (due to Aaron Chen):
Consider the special case Aij = δij , i.e. A is the
unit matrix. Then detA = εijkεijk. An individ-
ual term in this sum is equal to 1 if i �= j �= k
and 0 otherwise. How many different combina-
tions of i, j, and k are there in which i, j, and k
are all different?
(c.)
Guessing the explicit constant of proportional-
ity, write a similar equation for the determinant
of a 4× 4 matrix. How should εijkl be defined?
Hint:
How many different combinations of i, j, k, and l
are there in which i, j, k, and l are all different?
In defining εijkl, consider the fact that swapping
two adjacent indices of εijkl is like swapping two
adjacent rows of the matrix whose determinant
is calculated; swapping two adjacent indices of
εmnop is like swapping two adjacent columns of
that matrix.
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7.
Griffiths Problem 12.55. Don’t get fooled by the
typo – he means “∂µ ≡ ∂/∂xµ”.
Hint:
Consider the direct Lorentz transformation of
the spacetime four-vector x:

x′µ = Λµ
νx

ν .

Now, for any linear transformation

x′µ =
∂x′µ

∂xν
xν .

Therefore

Λµ
ν =

∂x′µ

∂xν
.

Likewise, considering the inverse transformation
of x, show that

(Λ−1)νµ =
∂xν

∂x′µ
.

Finally, use the chain rule to express ∂/∂x′µ in
terms of ∂xν/∂x′µ and ∂/∂xν .

8.
An object aµ is a (contravariant) four-vector
if it transforms (between frames as defined in
Short Course in Special Relativity (scsr) Fig. 2)
according to

a′µ = Λµ
νa

ν ,

where Λ is the (symmetric) 4× 4 Lorentz trans-
formation matrix. (Conventionally, the first
(superscript) index labels the row and the sec-
ond (subscript) index labels the column, but
this makes no difference for a symmetric ma-
trix.) Covariant four-vectors instead transform
according to

a′µ = aν(Λ−1)νµ

(otherwise the scalar product aµa
µ = a′µa

′µ

would not remain invariant for different Lorentz
frames). Consider now an (arbitrary) four-tensor
Hµν . In frame S, Hµν contracts with covariant
four-vector aν to yield contravariant four-vector
bµ, according to

bµ = Hµνaν .

In the frame S ′, requiring Hµν to satisfy the
transformation properties of a four-tensor, we
define H ′µν so that

b′µ = H ′µνa′ν .

Prove that

H ′µν = Λµ
ρΛ

ν
σH

ρσ .

This defines the Lorentz transformation prop-
erty of a four-tensor.
Hint:
Start from

bρ = Hρσaσ .

Substitute
bρ = (Λ−1)ραb

′α

and
aσ = a′νΛ

ν
σ .

Then multiply both sides of the resulting equa-
tion by Λµ

ρ and use the fact that

Λµ
ρ(Λ

−1)ρα = δ
µ
α ,

where δµα is an element of the unit matrix. Use
this fact to simplify the left-hand side. Then
compare your equation to

b′µ = H ′µνa′ν

and draw the desired conclusion.

9.
Consider the antisymmetric electromagnetic field
strength tensor

Fµν ≡ ∂µAν − ∂νAµ ,

where both ∂µ and Aµ are (contravariant) four-
vectors. Prove that Fµν is a four-tensor, i.e. it
transforms according to the result of Problem 8.
Hint:
Start from

F ′µν = ∂′µA′ν − ∂′νA′µ .

Write
∂′µ = Λµ

ρ∂
ρ

A′ν = Λν
σA

σ

(similarly for ∂′ν and A′µ), plug in, and collect
terms.
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10. (Light cone)
(a.)
Event A occurs at spacetime point (ct, x, y, z) =
(0, 1, 1, 1); event B occurs at (1, 0, 0, 0), both in
an inertial system S. Is there an inertial sys-
tem S ′ in which events A and B occur at the
same spatial coordinates? If so, find c|t′A − t′B |,
c times the magnitude of the time interval in S ′

between the two events.
Hint:
Denote by xA (xB) the spacetime coordinate of
event A (B); ∆x ≡ xB − xA. ∆x · ∆x is the
same in any Lorentz frame. Is ∆x timelike? If
so, how is ∆x′ ·∆x′ related to c|t′A − t′B |?
(b.)
Is there an inertial system S ′′ in which events A
and B occur simultaneously? If so, find |�r ′′A−�r ′′B |,
the distance in S ′′ between the two events.
Hint:
Is ∆x spacelike? If so, how is ∆x′′ ·∆x′′ related
to |�r ′′A − �r ′′B |?
(c.)
Can event A be the cause of event B, or vice
versa? Explain.
Hint:
Is ∆x timelike?
(d.)
Event D occurs at spacetime point (ct, x, y, z) =
(−1, 0, 0, 0); event E occurs at (2, 1, 1, 0), both in
an inertial system S. Is there an inertial system
S ′ in which events D and E occur simultane-
ously? If so, find |�r ′E − �r ′D|, the magnitude of
the distance in S ′ between the two events.
Hint:
Is ∆x spacelike? If so, how is ∆x′ ·∆x′ related
to |�r ′E − �r ′D|?
(e.)
Is there an inertial system S ′′ in which events D
and E occur at the same spatial coordinates? If
so, find c|t′′E − t′′D|, c times the magnitude of the
time interval in S ′′ between the two events.
Hint:
Is ∆x timelike? If so, how is ∆x′′ ·∆x′′ related
to c|t′′E − t′′D|?

11.
Using e.g. the method of Short Course in Special
Relativity [scsr] §7, obtain the 4 × 4 Lorentz
transformation matrix for the case in which

frame S ′ moves with respect to frame S with
speed β0c in an arbitrary direction (n1, n2, 0) in
the x-y plane, where �n is a unit vector.
Hint:
Consult scsr §7.

12.
(a.)
In scsr §8, clock time intervals measured in a
frame in which the clock is not at rest are shown
to be dilated by the factor γ0. This analysis
used the inverse Lorentz transformation. Rean-
alyze the same problem using the direct Lorentz
transformation. Is the answer the same?
Hint:
The temporal direct Lorentz transformation is

ct′2 = γ0ct2 − γ0β0x2

ct′1 = γ0ct1 − γ0β0x1 .

Subtracting,

γ0c∆t = c∆t′ + γ0β0∆x .

In order to eliminate ∆x, apply the spatial di-
rect Lorentz transformation and use the fact
that ∆x′ = 0.
(b.)
In scsr §9, the length of a rod measured in a
frame in which the rod is not at rest is shown to
be contracted by the factor 1/γ0. This analysis
used the direct Lorentz transformation. Reana-
lyze the same problem using the inverse Lorentz
transformation. Is the answer the same?
Hint:
The spatial inverse Lorentz transformation is

x2 = γ0x′2 + γ0β0ct
′
2

x1 = γ0x′1 + γ0β0ct
′
1 .

Subtracting,

∆x = γ0∆x′ + γ0β0c∆t′ .

In order to eliminate ∆t′, apply the temporal
inverse Lorentz transformation and use the fact
that ∆t = 0.
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13. (Addition of velocities)
In texts that do not emphasize the rapidity or
boost parameter η, the Einstein law for the ad-
dition of velocities is derived less elegantly as
follows (see scsr Fig. 7). Denote by x1 (x′1)
the x coordinate of the origin of S ′′ as observed
in the lab frame S (moving frame S ′). Write a
standard inverse Lorentz transformation

x0 = γx′0 + γβx′1

x1 = γx′1 + γβx′0 .

Then take the differential of it: dx0 = . . . ;
dx1 = . . . . Divide the bottom by the top
equation and identify

dx1

dx0
= β′′ = c−1 × speed of S ′′ in S

dx′1

dx′0
= β′ = c−1 × speed of S ′′ in S ′ .

Obtain the Einstein law for the addition of ve-
locities (scsr Eq. (24)):

β′′ =
β + β′

1 + ββ′
.

Hints are already embedded in the statement of
this problem.

14.
Consider the standard case in which two Lorentz
frames S and S ′ coincide at t = t′ = 0, with
frame S ′ moving at velocity βc x̂ with respect to
frame S. As seen in a third frame S ′′, also mov-
ing along x̂ with respect to S, two clocks fixed
to the origins of frames S and S ′, respectively,
appear to agree. With respect to frame S, con-
sidering that rapidity (“boost”) is the additive
parameter of the Lorentz transformation, show
that the speed β′′c of frame S ′′ is given by

β′′ = tanh
(

1
2 tanh

−1 β
)
.

Hint:
If the clocks in S and S ′ agree, what does that
say about the |boost| of each frame relative to
frame S ′′? If frames S and S ′ are different, can

the signs of their boosts relative to frame S ′′ be
the same? Keeping in mind that rapidity (boost)
is the additive parameter of the Lorentz transfor-
mation, write a simple equation describing how
the boosts η′′ and η are related. Then convert
that equation to an equation in β′′ and β.

15. (Taylor & Wheeler problem 51)
The clock paradox, version 3.
Hints are already embedded in the statement of
this problem, which is lengthy and not repeated
here.

16. (Surface muons)
“Surface” muon beams are important tools for
investigating the properties of condensed mat-
ter samples as well as fundamental particles.
Protons from a cyclotron produce π+ mesons
(quark-antiquark pairs) that come to rest near
the surface of a solid target. The pion then de-
cays to an (anti)muon (µ+, a heavy electron-like
particle) and a muon neutrino (νµ) via

π+ → µ+ + νµ .

Some of the muons can be captured by a beam
channel and transported in vacuum to an exper-
iment. In the limit that the mother pion decays
at the surface of the target (so that the daughter
muon traverses negligible material), the beam
muons have uniform speed (and, as it turns out,
100% polarization as well). For the purposes of
this problem, consider a muon to have 3

4 of the
rest mass of a pion; neglect the neutrino mass.
(a.)
Show that the surface muons travel at a speed
which is a fraction β0 = 7

25 of the speed of light.
Hint:
Take π, µ, and ν to be the four-momenta of the
pion, muon, and neutrino, respectively. Express
energy-momentum conservation two ways:

π − µ = ν
π − ν = µ .

For each equation take the dot product of the
lhs and rhs with itself. Solve the first equa-
tion for Eµ and the second for Eν . Given that
the neutrino is massless, what can you say about
the relationship between Eν and c|�pν |? Given
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that momentum is conserved, what can you say
about the relationship between �pν and �pµ? How
is βµ related to Eµ and c|�pµ|?
(b.)
If a muon’s mean proper lifetime is τ , what frac-
tion of the muons will decay during a flight path
of length L in the laboratory? Express your an-
swer in terms of β0.
Hint:
Apply time dilation to find the muon’s mean lab
lifetime, and use the muon’s lab velocity to con-
vert its mean lab lifetime to a mean lab path
length. For spontaneous decay, remember that
the survival probability depends exponentially
on the appropriate parameter (time or distance).

17.
In the lab frame S, a particle with velocity βc
= 4

5c decays into two massless particles with the
same energy each.
(a.)
If the parent particle has mean (proper) lifetime
τ in its own rest frame S ′, calculate its mean
flight path L in the lab frame S.
Hint:
Apply time dilation to find the parent particle’s
mean lab lifetime, and use the particle’s lab ve-
locity to convert its mean lab lifetime to a mean
lab flight path.
(b.)
In the lab frame S, calculate the opening angle
ψ = cos−1 p̂1 · p̂2 between the two daughter par-
ticles.
Hint:
Take P , p1, and p2 to be the four-momenta of the
parent and two daughters. Expressing energy-
momentum conservation as P = p1 + p2, take
the dot product of the lhs and rhs with itself.
Given that the daughter particles are massless,
how are c|�p1,2| related to E1,2? Given that en-
ergy is conserved, how are E1,2 related to the
parent energy E? Given the parent’s speed βc,
how is c|�P | related to E? Solve for cos p̂1 · p̂2.

18.
Here’s an adult version of Griffiths’ Problem
12.35. In a pair annihilation experiment, a
positron (mass m) with total energy E = γmc2

hits an electron (same mass, but opposite charge)

at rest. (Griffiths has it the other way around,
but that’s unrealistic – it’s easy to make a
positron beam, but hard to make a positron
target.) The two particles annihilate, producing
two photons. (If only one photon were produced,
energy-momentum conservation would force it to
be a massive particle traveling at a velocity less
than c.) If one of the photons emerges at an-
gle θ relative to the incident positron direction,
show that its energy ε is given by

mc2

ε
= 1−

√
γ − 1
γ + 1

cos θ .

(In particular, if the photon emerges perpendic-
ular to the beam, its energy is equal to mc2,
independent of the beam energy. Similar results
have been used to design clever experiments.)
Hint:
Take a, b, d, and e to be the four-momenta in
this 2+2 reaction a+ b → d + e ; note that par-
ticles a and b have mass m, that particle b is
at rest, and that particle d emerges at angle θ
with respect to the direction of a. Because the
least is known about particle e, express energy-
momentum conservation as

a+ b− d = e

and take the dot product of the lhs and rhs
with itself. Your expression should involve Ea,
�pa, and �pd as well as m and ε (the energy of
d). Use the fact that particle d is massless to
express c|�pd| in terms of ε. You are given the
Lorentz factor γ of particle a. Eliminate Ea by
expressing it in terms of m and γ, and eliminate
|�pa| by expressing it in terms of m, γ, and β(γ).

19.
If you have studied Rutherford scattering (elas-
tic scattering of a nonrelativistic He nucleus from
an Au nucleus), you have seen the differential
cross section for this process written in the form

dσ

dΩ
∝ (zZe2)2

sin4 Θ
2

,

where ze (Ze) is the electric charge of the He
(Au) nucleus; Θ is the angle by which the He
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nucleus is elastically scattered, measured in the
CM frame; and dΩ is an element of solid an-
gle within which the He nucleus emerges in that
frame. [A century ago, Rutherford-scattering
data collected by graduate students who were
used as particle detectors demonstrated that
atoms contain charged point-like constituents
(nuclei).] Here we revisit Rutherford scattering
for relativistic particles.

Consider the 2+2 relativistic scattering process

p+ a→ q + b ,

where p, a, q, and b denote both the particles
and their 4-momenta. The Mandelstam vari-
ables, first written down by Berkeley emeritus
professor Stanley Mandelstam, are

s ≡ (p+ a) · (p+ a) ≡ CM energy2
t ≡ (q − p) · (q − p) ≡ 4 momentum transfer2
u ≡ (b− p) · (b− p) ≡ cross channel transfer2

In this problem we are concerned with the Man-
delstam variable t.

(a.)
Further assuming that the masses of particles p
and q are negligible, show that

−t = 4E
c

E′
c sin

2 Θ
2 ,

where E (E′) is the energy of particle p (q), and
Θ is the angle between �p and �q.
Hint:
Take the dot product of (q − p) with itself; use
the fact that particles q and p are massless to
express c|�p| and c|�q| in terms of E and E′.
(b.)
Why is d(−t) a Lorentz invariant? dσ is an area
transverse to the beam direction. Why is dσ
invariant to Lorentz transformations along that
direction? In a system of units where h̄ = c = 1,
all quantities have dimensions that can be ex-
pressed in units of Joules. In those units, what
are the dimensions of dσ?
Hint:
The constant h̄c has dimensions of (energy) ×
(distance) [h̄c ≈ 197 × 10−9 eV m in SI]. How-
ever, in this problem’s system of units h̄c is equal

to unity, allowing you to multiply or divide by it
at will.
(c.)
In part (b.) you showed that dσ/d(−t) is a
Lorentz invariant. If particle p (which becomes
particle q) and particle a (which becomes parti-
cle b) both are structureless, and if the scattering
is elastic (particles a and b both have the same
mass), the only relevant Lorentz-invariant vari-
able that is available to us is −t. On purely
dimensional grounds, show that

dσ

d(−t) ∝
1
t2
.

[If p (a) has electric charge ze (Ze), and they
interact electromagnetically, the constant of pro-
portionality is 4πz2Z2α2, where the fine struc-
ture constant α is given as usual by 4πε0α =
e2/h̄c. This formula is correct to the extent that
Z or z × (α ≈ 1/137) can be neglected relative
to unity.]
(d.)
Under all of these conditions, using the results of
(a.) and (c.) and working in the center of mass,
show that the nonrelativistic elastic scattering
result

dσ

dΩ
∝ 1
sin4 Θ

2

does remain valid even when relativistic effects
are taken into account.
Hint:
In the cm, the elastic scattering process is speci-
fied completely by the single variable Θ. Express
−t and d(−t) in terms of Θ and dΘ. Then, inte-
grating over azimuth, express dΘ in terms of dΩ.

20. (Relations used in particle physics)
(a.) Lorentz-invariant phase space [lips]
By transforming dpx and E while keeping py and
pz fixed, show that

c dpx
E
dpydpz

is invariant to a boost along x. (Since one can
always define x to be the boost direction, and
d3p ≡ dpxdpydpz, a lips element

c d3p

E
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is invariant to a boost in any direction and there-
fore is Lorentz invariant.)
Hint:
You are trying to show

c dp′xdp
′
ydp

′
z

E′ =
c dpxdpydpz

E
.

Use a direct Lorentz transformation along x to
express dp′x in terms of dpx and dE, and to ex-
press E′ in terms of E and px. Consider the fact
that the four-momentum2 is equal to m2c2:

E2

c2 − p2x − p2y − p2z = m2c2 .

Holding py and pz constant, take the differen-
tial of each side to obtain a relation between dE
and dpx. Use this relation to eliminate dE from
your expression for dp′x; a welcome cancellation
should result.
(b.)
Suppose a particle has momentum �p and energy
E. Define the particle’s longitudinal rapidity y
to be the boost along x that would be needed to
make p′x = 0 in the new frame S ′. Show that

y = tanh−1 cpx
E
.

If your calculator doesn’t have an arc hyperbolic
tangent button, use the equivalent definitions

y = 1
2 ln

E/c+ px
E/c− px

y = ln
E/c+ px√
p2y + p2z +m2c2

.

Hint:
How is the particle’s |velocity| |�β|c related to |�p|
and E? How is the x component βxc of that
velocity related to px and E? What relative ve-
locity β0 of S ′ along the x direction would cause
β′x and therefore p

′
x to vanish? How is β0 related

to the required boost?
(c.)
Using the fact that the rapidity (boost) is the
additive parameter for the Lorentz transforma-
tion, and that y is defined to be a boost along x̂,
argue that an increment dy in longitudinal ra-
pidity must be the same in two Lorentz frames

that differ only by a relative boost along x̂. Use
this argument to conclude that

dy dpydpz

is invariant to boosts along x̂, as was the lips
element

c d3p

E

in part (a.). (In fact, these two expressions
are equal.) Invariance of the longitudinal rapid-
ity interval dy is a godsend for proton collider
users. Since the proton’s interacting constituents
(quarks or gluons) carry only a variable fraction
of the proton momentum, the center of mass
(cm) of the colliding constituents is boosted
along the beam direction by a variable amount
(typically of order unity). However, the differ-
ence in longitudinal rapidity between any pair
of emitted particles is unaffected by this unwel-
come cm boost.)
(d.)
Define the pseudorapidity ypseudo as the longi-
tudinal rapidity that a particle would have if it
were ultrarelativistic. Show that

ypseudo = tanh−1(cos θ) ,

where θ is the angle between the particle’s direc-
tion and the x axis. (This is another godsend:
if a particle is known to be ultrarelativistic, its
longitudinal rapidity can be approximated by its
pseudorapidity, which can be measured by know-
ing only the particle’s direction.) An equivalent
definition of pseudorapidity is

ypseudo = − ln (
tan θ

2

)
.

Hint:
If the particle is ultrarelativistic, what is the
relation between c|�p| and E?

21. (Effect of inefficient rocket engine)
All of the energy put out by the rocket engine de-
picted in scsr Fig. 9 consists of particles emitted
straight out the back. Consider the more realistic
case in which only a fraction ε of the energy out-
put consists of such particles; as seen in a Lorentz
frame comoving with the rocket, the balance of
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the energy is emitted isotropically, for example as
thermal photons. Therefore ε is the engine’s effi-
ciency. Otherwise adopt the conditions of scsr
Fig. 9 and carry out a derivation analogous to
that found in scsr §14. Assuming that it starts
from rest, show that the final boost of the rocket
is reduced directly by this efficiency factor:

ηfinal = ε |�β1| ln m0

mfinal
.

Hint:
For a perfectly efficient engine, the first set of
equations in scsr §14 is

P0 = (mc,�0)

P ′ ≈ (
(m− dm)c+ 1

2mc|d�β|2,mc d�β
)

p1 =
(dE1

c
, �β1
dE1

c

)
.

When the engine becomes inefficient, a third
class of final-state elements is created: photons
that carry off energy but are emitted isotropi-
cally. Define another four-momentum

q1 =
(dF1

c
, �q1

)

to represent the sum of these photons. What
is the value of their net momentum �q1? How is
their total energy dF1 related to dE1?

22. (Wave aberration)
Please refer to scsr Fig. 10. Consider Lorentz
frames S and S ′, with spatial origins coincident
at t = t′ = 0. As usual, frame S ′ moves in
the x̂ = x̂′ direction with velocity β0c relative to
frame S. A wave is emitted by a source that is
at rest with respect to S ′. As seen by an ob-
server in the lab frame S, the wave travels with
phase velocity βphc at an angle θ with respect
to the x̂ direction (θ = 0 if directly approaching,
θ = π if directly receding). However, as seen by
an observer who is at rest with respect to the
frame S ′, show that the wave makes a different
angle θ′ with respect to the x̂′ direction, where

tan θ′ =
sin θ

γ0(cos θ − β0βph)
.

Hint:
Defining the y axis so that the wave travels in the
xy plane, write direct Lorentz transformations
for k′y and k

′
x.

23. (Lorentz transformation of EM fields)
Consider Lorentz frames S and S ′, with frame
S ′ moving in the x̂ = x̂′ direction with veloc-
ity β0c relative to frame S. Using the Lorentz
transformation for the field strength tensor,

F ′µν = Λµ
ρΛ

ν
σF

ρσ ,

and considering explicitly the values of the ele-
ments of Fµν , as given by scsr Eq. (62), show
that

E′
y = γ0(Ey − β0cBz) ,

as claimed by Griffiths’ Eq. (12.102).
Hint: Evaluate F ′02 using the elements of Λ
and F .

24. (Relativistic electron-positron beams)
In a straight channel oriented along the ẑ axis
there are two opposing beams:

• a beam of positrons (charge +e) with velocity
+ẑβ0c.

• a beam of electrons (charge −e) with velocity
−ẑβ0c.

Each beam is confined to a small cylindrical vol-
ume of cross sectional area A centered on the
ẑ axis. Within that volume, there is a uni-
form number density = n positrons/m3 and n
electrons/m3.
(a.)
In terms of n, A, e, and β0, calculate the total
current I in the channel due to the sum of both
beams (note I �= 0).
Hint:
For a positron plasma of uniform velocity �v
and number density n, the current density
�J = +en�v , and the current I =

∫∫
�J · d�a .

(b.)
Use Ampère’s Law to calculate the (azimuthal)
magnetic field �B outside the channel a distance
s from the ẑ axis.

Consider now a Lorentz frame S ′ traveling in the
ẑ direction with velocity β0c relative to the lab
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frame described above. (This β0 is the same β0

as above.)
(c.)
As seen in S ′, calculate the number density
n′+ of positrons within the cylindrical volume.
(You may use elementary arguments involving
space contraction, or you may use the fact that
(cρ, �J) is a 4-vector, where ρ is the charge den-
sity (coul/m3) and �J is the current density
(amps/m2).)
Hint:
Considering only the positrons, write an inverse
Lorentz transformation for cρ+. For this partic-
ular relative velocity between S ′ and S, what is
�J ′+ ? How is ρ

(′)
+ related to n(′)

+ ?
(d.)
As seen in S ′, calculate the number density n′−
of electrons within the cylindrical volume.
Hint:
Considering only the electrons, write a direct
Lorentz transformation for cρ′−. Because S ′ is
not at rest with respect to the electrons, your
result will be slightly less elementary than your
result for n′+.
(e.)
Calculate the (cylindrically radial) electric field
�E′ seen outside the channel in S ′. Do this both

• by using the results of (c.) and (d.) plus Gauss’s
law, and

• by using the results of (b.) plus the rules for rel-
ativistic �E and �B field transformations.
Hint:
Taking advantage of the trivial value of �E in
S, write a direct Lorentz transformation for �E′

⊥
(cf. scsr Eq. (42)). Use ε0µ0 = 1/c2 to check
that both answers agree.

25.
(a.)
Express µ0J

ν as the four-divergence of the field
strength tensor Fµν . Exploiting the antisym-
metry of Fµν under interchange of its indices,
prove without reference to the specific values of
the elements of F that

∂µJ
µ = 0

and thus that electric charge must be conserved.
(The basic structure of Maxwell’s equations

would have to be completely reformulated if
even the tiniest violation of electric charge con-
servation were to be observed anywhere in the
universe.)
Hint:
Consider the sum AµνB

µν , where A and B are
any two Lorentz four-tensors. Suppose that A
is even under the interchange of µ and ν, while
B is odd. Consider a particular set of values of
µ and ν, for example 0 and 2, yielding a term
A02B

02 in the sum. However, since B but not
A is odd under interchange of indices, this term
will be cancelled by another term A20B

20. In
this argument, if B is well-behaved under differ-
entiation, can ∂µ∂ν play the same role as Aµν?
(b.)
Define

εµνρσ ≡ gµαgνβgρκgσλε
αβκλ ,

where ε is as defined after scsr Eq. (64). Prove
that

εµνρσ = −εµνρσ .

Hint:
When an index µ is changed from a superscript
(contravariant) to a subscript (covariant), or vice
versa, a sign change is required if the index is
spacelike (1 ≤ µ ≤ 3) but not if it is timelike
(µ = 0). If εµνρσ is nonzero, how many of its in-
dices are spacelike?
(c.)
Without making reference to the specific values
of the dual field strength tensor

Gµν ≡ 1
2ε

µνρσFρσ ,

using both the antisymmetry of F and the anti-
symmetry of ε, prove that

∂µG
µν = 0 .

(This is equivalent to the sourceless Maxwell
equations.)
Hint:
Write out Fρσ in terms of ∂ρ,σ and Aρ,σ. Use
the fact that εµνρσ is odd under interchange of
ρ and σ to combine the two terms. Now con-
sider ∂µG

µν . Recalling the argument made in
part (a.), what is the behavior of ε when µ and
ρ are interchanged?

10


